123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-"
- """
- DiaNA - 2020 - by psy (epsylon@riseup.net)
- You should have received a copy of the GNU General Public License along
- with DiaNA; if not, write to the Free Software Foundation, Inc., 51
- Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- """
- VERSION = "v0.3_beta"
- RELEASE = "19032020"
- SOURCE1 = "https://code.03c8.net/epsylon/diana"
- SOURCE2 = "https://github.com/epsylon/diana"
- CONTACT = "epsylon@riseup.net - (https://03c8.net)"
- """
- DNA-equiv:
- A <-> T
- C <-> G
- """
- import re, os, glob, random, time, math
- brain_path = "resources/BRAIN/brain.in" # in/out brain-tmp file
- genomes_path = 'datasets/' # genome datasets raw data
- genomes_list_path = "datasets/genome.list" # genome list
- universal_primer_list_path = "resources/PATTERNS/UPL.list" # UPL list
- dna_codons_list_path = "resources/PATTERNS/DNAcodon.list" # DNA codon list
- genomes = {} # main sources dict: genome_name
- seeds_checked = [] # list used for random checked patterns
- repeats = {} # repetitions 'tmp' dict: genome_name:(repets,pattern)
- known_patterns = [] # list used for known patterns
- max_length = 50 # [MAX. LENGTH] for range [PATTERN]
- def convert_size(size):
- if (size == 0):
- return '0 B'
- size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
- i = int(math.floor(math.log(size,1024)))
- p = math.pow(1024,i)
- s = round(size/p,2)
- return s, size_name[i]
- def search_pattern_with_human():
- pattern = input("[HUMAN] [SEARCH] Pattern (ex: attacg): ").upper()
- print("\n"+"-"*5 + "\n")
- create_new_pattern(pattern) # create new pattern
- def try_pattern_against_all_genomes_by_genome(pattern):
- for k, v in genomes.items():
- if pattern in v:
- t = len(re.findall(pattern, v))
- repeats[k] = t, pattern # create dict: genome = times, pattern
- def try_pattern_against_all_genomes_by_pattern(pattern, index):
- p_index = 0 # pattern index
- for k, v in genomes.items():
- if pattern in v:
- p_index = p_index + 1
- t = len(re.findall(pattern, v))
- repeats[index,p_index] = pattern, k, t # create dict: index, p_index = pattern, genome, times
- def sanitize_dna_pattern(pattern):
- valid_pattern = True
- for c in pattern:
- if c == "A":
- pass
- elif c == "T":
- pass
- elif c == "G":
- pass
- elif c == "C":
- pass
- elif c == "N":
- pass
- else:
- valid_pattern = False
- return valid_pattern
- def teach_ai():
- mode = input("[TRAIN-AI] MODE -> (H)uman, (A)utomata: ").upper()
- if not os.path.isfile(brain_path):
- create_initial_seed_file()
- if mode == "H": # human mode
- teach_ai_human_mode()
- else: # libre AI
- teach_ai_automata_mode() # automata mode
- def teach_ai_human_mode(): # search/discard patterns with human interaction & generate local database
- search_patterns_lesson_with_a_human()
- def search_patterns_lesson_with_a_human():
- print("\n"+"-"*30)
- print("\n[TRAIN-AI] [HUMAN] [STOP] this mode; just entering whatever invalid pattern (ex: 'exit' or 'q').\n")
- key = "K" # continue
- while key == "K":
- pattern = input("[TRAIN-AI] [HUMAN] [LOOP] [SEARCH] Pattern (ex: attacg): ").upper()
- print("\n"+"-"*5 + "\n")
- key = search_pattern_on_lesson(pattern)
- if key == "Z": # stop
- break
- def search_pattern_on_lesson(pattern):
- valid_pattern = sanitize_dna_pattern(pattern)
- if valid_pattern == True:
- key = search_pattern_on_local_database(pattern) # search pattern on local database
- else:
- print("[ERROR] -> Invalid DNA pattern ... [EXITING!]\n")
- key = "Z" # stop
- return key
- def search_pattern_on_local_database(pattern):
- f=open(brain_path, 'r')
- memory = f.read().replace('\n',' ')
- f.close()
- patterns_known = 0
- if not "'"+pattern+"'" in memory: # always create new patterns
- create_new_pattern(pattern) # create new pattern
- patterns_known = patterns_known + 1
- else:
- for k, v in genomes.items(): # create patterns found for new genomes
- if k not in memory:
- create_new_pattern(pattern) # create new pattern
- patterns_known = patterns_known + 1
- if patterns_known == 0:
- print("[TRAIN-AI] [AUTOMATA] [LOOP] [RESULTS] -ALREADY- [LEARNED!] ... -> [GOING FOR NEXT!]\n")
- print("-"*5 + "\n")
- key = "K" # continue
- return key
- def create_initial_seed_file():
- f=open(brain_path, 'w')
- f.write("")
- f.close()
- def create_new_pattern(pattern): # append it to brain
- valid_pattern = sanitize_dna_pattern(pattern)
- if valid_pattern == True:
- if pattern not in known_patterns:
- known_patterns.append(pattern)
- try_pattern_against_all_genomes_by_genome(pattern) # generate repeats dict
- patterns_found = 0
- for k, v in repeats.items(): # list patterns found to output
- print (" *", k +":", "-> ",v,"")
- patterns_found = patterns_found + 1
- print("")
- if patterns_found == 0:
- print("[INFO] -> Not any found! ... [EXITING!]\n")
- else:
- f=open(brain_path, 'a')
- f.write(str(repeats)+os.linesep) # add dict as str
- f.close()
- else:
- print("[ERROR] -> Invalid DNA pattern ... [EXITING!]\n")
- def teach_ai_automata_mode(): # search patterns by bruteforcing ranges & generate local database
- search_patterns_lesson_with_an_ai()
- def search_patterns_lesson_with_an_ai():
- print("\n"+"-"*30)
- print("\n[TRAIN-AI] [AUTOMATA] [STOP] this mode; pressing 'CTRL+z'.\n")
- ranges = input("[TRAIN-AI] [AUTOMATA] [SEARCH] Set range (x<y) for pattern deep searching (ex: 2-8): ")
- print ("")
- valid_range, ranged_permutations = check_for_deep_searching_ranges(ranges)
- if str(valid_range) == "OK!":
- ranged_ending = False
- print("-"*15)
- print("\n[TRAIN-AI] [AUTOMATA] [SEARCH] Number of [PERMUTATIONS] estimated: [ "+str(ranged_permutations)+" ]\n")
- print("-"*15+"\n")
- num_pat = 0
- while ranged_ending == False: # try to STOP it using: CTRL-z
- try:
- pattern, ranged_ending = generate_random_pattern(ranges, ranged_permutations) # generate random seed
- if pattern:
- num_pat = num_pat + 1
- print("[TRAIN-AI] [AUTOMATA] [LOOP] [SEARCH] Generating [RANDOM!] ["+str(num_pat)+"/"+str(ranged_permutations)+"] pattern: [ " + str(pattern) + " ]\n")
- if not num_pat == ranged_permutations:
- search_pattern_on_lesson(pattern)
- else:
- search_pattern_on_lesson(pattern)
- print("[TRAIN-AI] [AUTOMATA] [RESULTS]: REVIEWED -> [ "+str(ranged_permutations)+" PERMUTATIONS ] ... -> [EXITING!]\n")
- ranged_ending = True
- except:
- pass
- else:
- print("-"*15+"\n")
- print("[TRAIN-AI] [AUTOMATA] [ERROR] -> [INVALID!] Deep Learning [RANGE] -> "+valid_range+" ... [EXITING!]\n")
- def generate_random_pattern(ranges, ranged_permutations):
- ranged_length = 0
- try:
- range_low = int(ranges.split("-")[0])
- range_high = int(ranges.split("-")[1])
- for i in range(range_low, range_high+1):
- ranged_length = ranged_length + 1
- if ranged_length == ranged_permutations: # all possible variables have been bruteforced/checked! -> exit
- pattern = None
- ranged_ending = True
- return pattern, ranged_ending
- else:
- ranged_ending = False
- seed = [random.randrange(0, 4) for _ in range(i)] # generate "random" seed
- if seed not in seeds_checked:
- seeds_checked.append(seed)
- pattern = ""
- for n in seed:
- if n == 0:
- pattern += "A"
- elif n == 1:
- pattern += "C"
- elif n == 2:
- pattern += "T"
- else:
- pattern += "G"
- return pattern, ranged_ending
- except:
- print("[TRAIN-AI] [AUTOMATA] [ERROR] -> [INVALID!] Deep Learning [RANGE] ... [EXITING!]\n")
- pattern = None
- ranged_ending = True
- return pattern, ranged_ending
- def check_for_deep_searching_ranges(ranges):
- try:
- range_low = ranges.split("-")[0]
- range_high = ranges.split("-")[1]
- except:
- valid_range = "'bad format'"
- try:
- range_low = int(range_low)
- except:
- valid_range = "'low range' should be an integer"
- try:
- range_high = int(range_high)
- except:
- valid_range = "'high range' should be an integer"
- try:
- if range_low < range_high:
- if range_low > 1: # always range > 1
- valid_range = "OK!"
- else:
- valid_range = "'low range' should be > than 1"
- else:
- valid_range = "'low range' should be < than 'high range'"
- except:
- valid_range = "'bad format'"
- try:
- ranged_permutations = math_ranged_permutations(range_low, range_high)
- except:
- ranged_permutations = 0
- valid_range = "'bad format'"
- return valid_range, ranged_permutations
- def math_ranged_permutations(range_low, range_high): # calculate ranged_permutations
- ranged_permutations = 0
- for i in range(range_low, range_high+1):
- ranged_permutations = ranged_permutations + (4**i)
- return ranged_permutations
- def libre_ai(): # show statistics / download new genomes / keep crossing new genomes with local database / search for new patterns (non stop!)
- if not os.path.isfile(brain_path):
- create_initial_seed_file()
- memory = examine_stored_brain_memory()
- if memory != "":
- #print("[LIBRE-AI] [STOP] this mode; pressing 'CTRL+z'.\n")
- libre_ai_show_statistics(memory) # show statistics
- def libre_ai_show_statistics(memory):
- print("[LIBRE-AI] [REPORTING] [STATISTICS] ... -> [STARTING!]\n")
- print("-"*15 + "\n")
- total_genomes = 0
- total_adenine = 0
- total_guanine = 0
- total_cytosine = 0
- total_thymine = 0
- total_any = 0
- total_patterns = 0
- secuence_length = 0
- secuences_length_list = {}
- largest = None
- largest_len = 0
- shortest_len = 0
- average = None
- shortest = None
- for k, v in genomes.items():
- secuence_length = len(v)
- secuences_length_list[k] = str(secuence_length)
- total_genomes = total_genomes + 1
- total_adenine = total_adenine + v.count("A")
- total_guanine = total_guanine + v.count("G")
- total_cytosine = total_cytosine + v.count("C")
- total_thymine = total_thymine + v.count("T")
- total_any = total_any + v.count("N")
- path = genomes_path # genome datasets raw data
- l = glob.glob(genomes_path+"*") # black magic!
- latest_collection_file = max(l, key=os.path.getctime)
- latest_collection_date = time.ctime(os.path.getmtime(latest_collection_file))
- total_nucleotids = [total_adenine, total_guanine, total_cytosine, total_thymine, total_any]
- num_total_nucleotids = total_adenine + total_guanine + total_cytosine + total_thymine + total_any
- nucleotid_more_present = max(total_nucleotids)
- print("[LIBRE-AI] [REPORTING] -STORAGE- [STATISTICS]: \n")
- extract_storage_sizes()
- print(" * [LATEST UPDATE]: '"+str(latest_collection_date)+"'\n")
- print(" + File: '"+str(latest_collection_file)+"'\n")
- print("-"*5 + "\n")
- print("[LIBRE-AI] [REPORTING] -COLLECTION- [STATISTICS]: \n")
- extract_total_patterns_learned_from_local(memory)
- print("\n"+"-"*5 + "\n")
- print("[LIBRE-AI] [REPORTING] -ANALYSIS- [STATISTICS]: \n")
- print(" * Total [DNA SECUENCES]: [ "+str(total_genomes)+" ]\n")
- largest = 0
- largest_pattern_name = []
- largest_pattern_size = []
- for k, v in secuences_length_list.items():
- if int(v) > int(largest):
- largest = v
- largest_pattern_name.append(k)
- largest_pattern_size.append(largest)
- for p in largest_pattern_name:
- largest_pattern_name = p
- for s in largest_pattern_size:
- largest_pattern_size = s
- print(" + [LARGEST] : "+str(largest_pattern_name)+ " [ "+str(largest_pattern_size)+" bp linear RNA ]")
- prev_shortest = None
- shortest_pattern_name = []
- shortest_pattern_size = []
- for k, v in secuences_length_list.items():
- if prev_shortest == None:
- shortest = v
- shortest_pattern_name.append(k)
- shortest_pattern_size.append(shortest)
- prev_shortest = True
- else:
- if int(v) < int(shortest):
- shortest = v
- shortest_pattern_name.append(k)
- shortest_pattern_size.append(shortest)
- for p in shortest_pattern_name:
- shortest_pattern_name = p
- for s in shortest_pattern_size:
- shortest_pattern_size = s
- print(" + [SHORTEST]: "+str(shortest_pattern_name)+ " [ "+str(shortest_pattern_size)+" bp linear RNA ]\n")
- print(" * Total [NUCLEOTIDS]: [ "+str(num_total_nucleotids)+" ]\n")
- if nucleotid_more_present == total_adenine:
- print(" + [A] Adenine : "+str(total_adenine)+" <- [MAX]")
- else:
- print(" + [A] Adenine : "+str(total_adenine))
- if nucleotid_more_present == total_guanine:
- print(" + [G] Guanine : "+str(total_guanine)+" <- [MAX]")
- else:
- print(" + [G] Guanine : "+str(total_guanine))
- if nucleotid_more_present == total_cytosine:
- print(" + [C] Cytosine : "+str(total_cytosine)+" <- [MAX]")
- else:
- print(" + [C] Cytosine : "+str(total_cytosine))
- if nucleotid_more_present == total_thymine:
- print(" + [T] Thymine : "+str(total_thymine)+" <- [MAX]")
- else:
- print(" + [T] Thymine : "+str(total_thymine))
- if total_any > 0:
- if nucleotid_more_present == total_any:
- print(" + [N] *ANY* : "+str(total_any)+" <- [MAX]\n")
- else:
- print(" + [N] *ANY* : "+str(total_any)+"\n")
- print("-"*5 + "\n")
- extract_pattern_most_present_local(memory)
- def convert_memory_to_dict(memory): # [index] = genome_name, pattern, num_rep
- memory_dict = {}
- index = 0
- for m in memory:
- regex_record = "'(.+?)': (.+?), '(.+?)'" # regex magics! - extract first each record
- pattern_record = re.compile(regex_record)
- record = re.findall(pattern_record, m)
- for r in record: # now extract each field
- index = index + 1
- name = str(r).split("', '(")[0]
- genome_name = str(name).split("'")[1]
- repeats = str(r).split("', '(")[1]
- genome_repeats = str(repeats).split("',")[0]
- pattern = str(repeats).split("',")[1]
- genome_pattern = pattern.replace(" ", "")
- genome_pattern = genome_pattern.replace("'", "")
- genome_pattern = genome_pattern.replace(")", "")
- memory_dict[index] = genome_name, genome_pattern, genome_repeats # generate memory_dict!
- return memory_dict
- def extract_pattern_most_present_local(memory):
- memory_dict = convert_memory_to_dict(memory)
- if genomes:
- try:
- f=open(dna_codons_list_path, 'r')
- codons = f.readlines()
- f.close()
- except:
- pass
- print("[LIBRE-AI] [REPORTING] -RESEARCHING- [STATISTICS]: \n")
- total_genomes = 0
- for k, v in genomes.items():
- total_genomes = total_genomes + 1
- if memory_dict:
- total_patterns = 0
- for m in memory:
- total_patterns = total_patterns + 1 # counter used for known patterns
- max_size_pattern_name, less_size_pattern_name, biggest_pattern_name, biggest_pattern_size, smaller_pattern_name, smaller_pattern_size, total_patterns_all_genomes, most_present_patterns_by_len_list, less_present_patterns_by_len_list = extract_patterns_most_found_in_all_genomes(memory_dict)
- print(" * Trying -[ "+str(total_patterns)+" ]- [PATTERNS LEARNED!] against -[ "+str(total_genomes)+ " ]- [DNA SECUENCES]:")
- if total_patterns_all_genomes:
- print("\n + Total [PATTERNS FOUND!]: [ "+str(total_patterns_all_genomes)+" ]")
- biggest_pattern_name_codon = None
- for c in codons:
- if c.split(":")[0] == str(biggest_pattern_name):
- biggest_pattern_name_codon = str(c.split(":")[1].replace("\n",""))
- print("\n - [MOST-PRESENT!]: [ "+str(biggest_pattern_size)+" ] time(s) -> [ "+str(biggest_pattern_name)+" ] "+str(biggest_pattern_name_codon)+"\n")
- if biggest_pattern_name_codon == None:
- print("\n - [MOST-PRESENT!]: [ "+str(biggest_pattern_size)+" ] time(s) -> [ "+str(biggest_pattern_name)+" ]\n")
- other_pattern_name_codon = None
- for k, v in most_present_patterns_by_len_list.items():
- for c in codons:
- if c.split(":")[0] == str(v[0]):
- other_pattern_name_codon = str(c.split(":")[1].replace("\n",""))
- print(" * [length = "+str(k)+"] : [ "+str(v[1])+" ] time(s) -> [ "+str(v[0])+" ] "+str(other_pattern_name_codon))
- if other_pattern_name_codon == None:
- print(" * [length = "+str(k)+"] : [ "+str(v[1])+" ] time(s) -> [ "+str(v[0])+" ]")
- other_pattern_name_codon = None
- smaller_pattern_name_codon = None
- for c in codons:
- if c.split(":")[0] == str(smaller_pattern_name):
- smaller_pattern_name_codon = str(c.split(":")[1].replace("\n",""))
- print("\n - [LESS-PRESENT!]: [ "+str(smaller_pattern_size)+" ] time(s) -> [ "+str(smaller_pattern_name)+" ] "+str(smaller_pattern_name_codon)+"\n")
- if smaller_pattern_name_codon == None:
- print("\n - [LESS-PRESENT!]: [ "+str(smaller_pattern_size)+" ] time(s) -> [ "+str(smaller_pattern_name)+" ]\n")
- other_pattern_name_codon = None
- for n, m in less_present_patterns_by_len_list.items():
- for c in codons:
- if c.split(":")[0] == str(m[0]):
- other_pattern_name_codon = str(c.split(":")[1].replace("\n",""))
- print(" * [length = "+str(n)+"] : [ "+str(m[1])+" ] time(s) -> [ "+str(m[0])+" ] "+str(other_pattern_name_codon))
- if other_pattern_name_codon == None:
- print(" * [length = "+str(n)+"] : [ "+str(m[1])+" ] time(s) -> [ "+str(m[0])+" ]")
- other_pattern_name_codon = None
- max_size_pattern_name = max(most_present_patterns_by_len_list, key=most_present_patterns_by_len_list.get)
- less_size_pattern_name = min(most_present_patterns_by_len_list, key=most_present_patterns_by_len_list.get)
- print("\n - [LARGEST] : [ "+str(max_size_pattern_name)+" ] bp linear RNA")
- print(" - [SHORTEST]: [ "+str(less_size_pattern_name)+" ] bp linear RNA\n")
- else:
- print("\n + Total [PATTERNS FOUND!]: [ 0 ]\n")
- try:
- f=open(universal_primer_list_path, 'r')
- UPL = f.readlines()
- f.close()
- if UPL:
- extract_potential_primer_pairs(UPL, total_genomes, codons)
- except:
- pass
- if codons:
- extract_potential_dna_codons(codons, total_genomes)
- def extract_potential_primer_pairs(UPL, total_genomes, codons):
- total_universal_primer_pairs = 0
- total_primer_pairs_found = 0
- primer_pairs_found_list = {}
- for pp in UPL:
- total_universal_primer_pairs = total_universal_primer_pairs + 1
- for k, v in genomes.items():
- pair_name = pp.split(":")[1].upper().replace("\n","")
- pair_sec = pp.split(":")[0]
- if str(pair_name) in str(v.upper()):
- pair_times = v.count(pair_name)
- total_primer_pairs_found += pair_times
- primer_pairs_found_list[pair_sec] = pair_name, total_primer_pairs_found
- print(" * Trying -[ "+str(total_universal_primer_pairs)+" ]- [UNIVERSAL PRIMER PAIRS!] against -[ "+str(total_genomes)+ " ]- [DNA SECUENCES]:")
- if total_primer_pairs_found:
- total_primer_pairs_found_list = 0
- for m, n in primer_pairs_found_list.items():
- total_primer_pairs_found_list = total_primer_pairs_found_list + n[1]
- print("\n + Total [UNIVERSAL PRIMER PAIRS FOUND!]: [ "+str(total_primer_pairs_found_list)+" ]\n")
- for m, n in primer_pairs_found_list.items():
- print(" * "+str(m)+" -> [ "+str(n[0])+" ] : [ "+str(n[1])+" ] time(s)")
- print ("")
- else:
- print("\n + Total [UNIVERSAL PRIMER PAIRS FOUND!]: [ 0 ]\n")
- def extract_potential_dna_codons(codons, total_genomes):
- total_codons = 0
- total_codons_found = 0
- codons_found_list = {}
- codons_found_list_by_codon = {}
- for c in codons:
- total_codons = total_codons + 1
- for k, v in genomes.items():
- codon_name = c.split(":")[0].upper().replace("\n","")
- if str(codon_name) in str(v.upper()):
- codons_times = v.count(codon_name)
- total_codons_found += codons_times
- codons_found_list[codons_times] = c.split(":")[0], str(c.split(":")[1]), k
- print(" * Trying -[ "+str(total_codons)+" ]- [PATTERN CODONS!] against -[ "+str(total_genomes)+ " ]- [DNA SECUENCES]:")
- if total_codons_found:
- for m, n in codons_found_list.items():
- codon_sec = str(n[0])
- codon_name = str(n[1].replace("\n",""))
- if not codon_sec in codons_found_list_by_codon.keys():
- codons_found_list_by_codon[codon_sec] = codon_name, m
- else:
- for r, s in codons_found_list_by_codon.items():
- if codon_sec == r:
- new_v = s[1] + m
- codons_found_list_by_codon[codon_sec] = codon_name, new_v
- codons_found_list_by_name = {}
- for g,z in codons_found_list_by_codon.items():
- if not z[0] in codons_found_list_by_name.keys():
- codons_found_list_by_name[z[0]]= z[1]
- else:
- for e, q in codons_found_list_by_name.items():
- if z[0] == e:
- new_s = q + z[1]
- codons_found_list_by_name[z[0]] = new_s
- total_codons_by_codon = 0
- for p, f in codons_found_list_by_name.items():
- total_codons_by_codon = total_codons_by_codon + f
- print("\n + Total [PATTERN CODONS FOUND!]: [ "+str(total_codons_by_codon)+" ]\n")
- for p, f in codons_found_list_by_name.items():
- print(" * "+str(p)+" : "+str(f)+" time(s)")
- print ("")
- else:
- print("\n + Total [PATTERN CODONS FOUND!]: [ 0 ]\n")
- def extract_patterns_most_found_in_all_genomes(memory_dict):
- present_patterns = []
- for m, p in memory_dict.items():
- pattern = p[1]
- if pattern not in present_patterns:
- present_patterns.append(pattern)
- index = 0 # genome num index
- for pattern in present_patterns:
- index = index + 1
- try_pattern_against_all_genomes_by_pattern(pattern, index)
- total_patterns_all_genomes = 0
- largest_size_by_pattern = {}
- largest_size_by_pattern_index = 0
- for k,v in repeats.items():
- largest_size_by_pattern_index = largest_size_by_pattern_index + 1
- total_patterns_all_genomes = total_patterns_all_genomes + v[2] # total patterns all genomes
- largest_size_by_pattern[largest_size_by_pattern_index] = v[0], v[2]
- total_patterns_by_pattern = 0
- list_total_patterns_by_pattern = {}
- for i, v in largest_size_by_pattern.items():
- total_patterns_by_pattern = total_patterns_by_pattern + v[1]
- list_total_patterns_by_pattern[v[0]] = total_patterns_by_pattern
- biggest_pattern_name = None
- biggest_pattern_size = 0
- smaller_pattern_name = None
- smaller_pattern_size = 0
- max_size_pattern = 0
- for r, z in list_total_patterns_by_pattern.items():
- pattern_length = len(r)
- if pattern_length > max_size_pattern:
- max_size_pattern_name = r
- if biggest_pattern_name == None:
- biggest_pattern_name = r
- smaller_pattern_name = r
- biggest_pattern_size = z
- smaller_pattern_size = z
- less_size_pattern_name = r
- less_size_pattern_size = z
- else:
- if pattern_length < less_size_pattern_size:
- less_size_pattern_size = pattern_length
- less_size_pattern_name = r
- if z > biggest_pattern_size:
- biggest_pattern_name = r
- biggest_pattern_size = biggest_pattern_size + z
- else:
- if z < smaller_pattern_size:
- smaller_pattern_name = r
- smaller_pattern_size = z
- most_present_patterns_by_len_list = extract_most_present_pattern_by_len(list_total_patterns_by_pattern)
- less_present_patterns_by_len_list = extract_less_present_pattern_by_len(list_total_patterns_by_pattern)
- return max_size_pattern_name, less_size_pattern_name, biggest_pattern_name, biggest_pattern_size, smaller_pattern_name, smaller_pattern_size, total_patterns_all_genomes, most_present_patterns_by_len_list, less_present_patterns_by_len_list
- def extract_most_present_pattern_by_len(list_total_patterns_by_pattern):
- most_present_patterns_by_len_list = {}
- for k, v in list_total_patterns_by_pattern.items():
- pattern_len = len(k)
- if pattern_len in most_present_patterns_by_len_list.keys():
- if v > most_present_patterns_by_len_list[pattern_len][1]:
- most_present_patterns_by_len_list[pattern_len] = k, v
- else:
- most_present_patterns_by_len_list[pattern_len] = k, v
- return most_present_patterns_by_len_list
- def extract_less_present_pattern_by_len(list_total_patterns_by_pattern):
- less_present_patterns_by_len_list = {}
- for k, v in list_total_patterns_by_pattern.items():
- pattern_len = len(k)
- if pattern_len in less_present_patterns_by_len_list.keys():
- if v < less_present_patterns_by_len_list[pattern_len][1]:
- less_present_patterns_by_len_list[pattern_len] = k, v
- else:
- less_present_patterns_by_len_list[pattern_len] = k, v
- return less_present_patterns_by_len_list
- def extract_storage_sizes():
- total_dataset_size = 0
- total_files_size = 0
- total_list_size = 0
- for file in glob.iglob(genomes_path + '*/*/*', recursive=True): # extract datasets sizes
- if(file.endswith(".genome")):
- total_dataset_size = total_dataset_size + len(file)
- try:
- f=open(brain_path, "r") # extract brain sizes
- total_brain_size = len(f.read())
- f.close()
- except:
- total_brain_size = 0
- try:
- f=open(genomes_list_path, "r") # extract genomes list sizes
- total_list_size = len(f.read())
- f.close()
- except:
- total_list_size = 0
- if total_dataset_size > 0:
- total_files_size = int(total_files_size) + int(total_dataset_size)
- dataset_s, dataset_size_name = convert_size(total_dataset_size)
- total_dataset_size = '%s %s' % (dataset_s,dataset_size_name)
- if total_brain_size > 0:
- total_files_size = int(total_files_size) + int(total_brain_size)
- brain_s, brain_size_name = convert_size(total_brain_size)
- total_brain_size = '%s %s' % (brain_s,brain_size_name)
- if total_list_size > 0:
- total_files_size = int(total_files_size) + int(total_list_size)
- list_s, list_size_name = convert_size(total_list_size)
- total_list_size = '%s %s' % (list_s,list_size_name)
- total_s, total_size_name = convert_size(total_files_size)
- total_files_size = '%s %s' % (total_s,total_size_name)
- print(" * Total [FILE SIZES]: "+str(total_files_size)+"\n")
- if total_dataset_size:
- print(" + [DATASET]: "+str(total_dataset_size)+"\n")
- if total_list_size:
- print(" + [LIST]: "+str(total_list_size)+"\n")
- if total_brain_size:
- print(" + [BRAIN]: "+str(total_brain_size)+"\n")
- def extract_total_patterns_learned_from_local(memory):
- total_patterns = 0
- for m in memory:
- total_patterns = total_patterns + 1
- print(" * [SETTINGS] Using [MAX. LENGTH] for range [PATTERN] = [ "+str(max_length)+" ]\n")
- if total_patterns > 0:
- print(" + [PATTERNS LEARNED!]: [ "+str(total_patterns)+" ]\n")
- else:
- print(" + [PATTERNS LEARNED!]: [ "+str(total_patterns)+" ]")
- generate_pattern_len_report_structure(memory)
- return memory
- def list_genomes_on_database():
- print("[LIST] [REPORTING] [DNA SECUENCES] ... -> [STARTING!]\n")
- f=open(dna_codons_list_path, 'r')
- codons = f.readlines()
- f.close()
- print("-"*15 + "\n")
- f=open(genomes_list_path, 'w')
- for k, v in genomes.items():
- print ("*"+str(k)+ "-> [ "+str(len(v))+" bp linear RNA ]")
- print (" + [A] Adenine :", str(v.count("A")))
- print (" + [G] Guanine :", str(v.count("G")))
- print (" + [C] Cytosine :", str(v.count("C")))
- print (" + [T] Thymine :", str(v.count("T")))
- f.write(str("*"+ str(k)+ " -> [ "+str(len(v))+"bp linear RNA ]\n"))
- f.write(str(" + [A] Adenine : " + str(v.count("A"))+"\n"))
- f.write(str(" + [G] Guanine : " + str(v.count("G"))+"\n"))
- f.write(str(" + [C] Cytosine : " + str(v.count("C"))+"\n"))
- f.write(str(" + [T] Thymine : " + str(v.count("T"))+"\n"))
- if v.count("N") > 0:
- print (" + [N] *ANY* :", str(v.count("N")))
- f.write(str(" + [N] *ANY* : "+ str(v.count("N"))+"\n"))
- for c in codons:
- codon_sec = str(c.split(":")[0])
- codon_name = str(c.split(":")[1].replace("\n",""))
- codon_counter = str(v.count(str(c.split(":")[0])))
- print (" + ["+codon_sec+"] "+codon_name+" :", codon_counter)
- f.write(str(" + ["+codon_sec+"] "+codon_name+" : "+ codon_counter)+"\n")
- print ("")
- f.write("\n")
- print("-"*15 + "\n")
- print ("[LIST] [INFO] [SAVED!] at: '"+str(genomes_list_path)+"'... -> [EXITING!]\n")
- f.close()
- def examine_stored_brain_memory():
- memory = [] # list used as hot-memory
- f=open(brain_path, 'r')
- for line in f.readlines():
- if line not in memory:
- memory.append(line)
- f.close()
- if memory == "": # first time run!
- print ("[LIBRE-AI] [INFO] Not any [BRAIN] present ... -> [BUILDING ONE!]\n")
- print("-"*15 + "\n")
- for i in range(2, 11+1):
- seed = [random.randrange(0, 4) for _ in range(i)] # generate "static" genesis seed
- if seed not in seeds_checked:
- seeds_checked.append(seed)
- pattern = ""
- for n in seed:
- if n == 0:
- pattern += "A"
- elif n == 1:
- pattern += "C"
- elif n == 2:
- pattern += "T"
- else:
- pattern += "G"
- print("[LIBRE-AI] [SEARCH] Generating [RANDOM] pattern: " + str(pattern) + "\n")
- create_new_pattern(pattern) # create new pattern
- print("-"*15 + "\n")
- print ("[LIBRE-AI] [INFO] A new [BRAIN] has been created !!! ... -> [ADVANCING!]\n")
- f=open(brain_path, 'r')
- memory = f.read().replace('\n',' ')
- f.close()
- return memory
- def generate_pattern_len_report_structure(memory):
- pattern_len_1 = 0 # related with [MAX. LENGTH] range
- pattern_len_2 = 0
- pattern_len_3 = 0
- pattern_len_4 = 0
- pattern_len_5 = 0
- pattern_len_6 = 0
- pattern_len_7 = 0
- pattern_len_8 = 0
- pattern_len_9 = 0
- pattern_len_10 = 0
- pattern_len_11 = 0
- pattern_len_12 = 0
- pattern_len_13 = 0
- pattern_len_14 = 0
- pattern_len_15 = 0
- pattern_len_16 = 0
- pattern_len_17 = 0
- pattern_len_18 = 0
- pattern_len_19 = 0
- pattern_len_20 = 0
- pattern_len_21 = 0
- pattern_len_22 = 0
- pattern_len_23 = 0
- pattern_len_24 = 0
- pattern_len_25 = 0
- pattern_len_26 = 0
- pattern_len_27 = 0
- pattern_len_28 = 0
- pattern_len_29 = 0
- pattern_len_30 = 0
- pattern_len_31 = 0
- pattern_len_32 = 0
- pattern_len_33 = 0
- pattern_len_34 = 0
- pattern_len_35 = 0
- pattern_len_36 = 0
- pattern_len_37 = 0
- pattern_len_38 = 0
- pattern_len_39 = 0
- pattern_len_40 = 0
- pattern_len_41 = 0
- pattern_len_42 = 0
- pattern_len_43 = 0
- pattern_len_44 = 0
- pattern_len_45 = 0
- pattern_len_46 = 0
- pattern_len_47 = 0
- pattern_len_48 = 0
- pattern_len_49 = 0
- pattern_len_50 = 0
- for m in memory:
- try:
- pattern_len = m.split(", '")[1]
- pattern_len = pattern_len.split("')")[0]
- pattern_len = len(pattern_len)
- except:
- pattern_len = 0 # discard!
- if pattern_len == 1:
- pattern_len_1 = pattern_len_1 + 1
- elif pattern_len == 2:
- pattern_len_2 = pattern_len_2 + 1
- elif pattern_len == 3:
- pattern_len_3 = pattern_len_3 + 1
- elif pattern_len == 4:
- pattern_len_4 = pattern_len_4 + 1
- elif pattern_len == 5:
- pattern_len_5 = pattern_len_5 + 1
- elif pattern_len == 6:
- pattern_len_6 = pattern_len_6 + 1
- elif pattern_len == 7:
- pattern_len_7 = pattern_len_7 + 1
- elif pattern_len == 8:
- pattern_len_8 = pattern_len_8 + 1
- elif pattern_len == 9:
- pattern_len_9 = pattern_len_9 + 1
- elif pattern_len == 10:
- pattern_len_10 = pattern_len_10 + 1
- elif pattern_len == 11:
- pattern_len_11 = pattern_len_11 + 1
- elif pattern_len == 12:
- pattern_len_12 = pattern_len_12 + 1
- elif pattern_len == 13:
- pattern_len_13 = pattern_len_13 + 1
- elif pattern_len == 14:
- pattern_len_14 = pattern_len_14 + 1
- elif pattern_len == 15:
- pattern_len_15 = pattern_len_15 + 1
- elif pattern_len == 16:
- pattern_len_16 = pattern_len_16 + 1
- elif pattern_len == 17:
- pattern_len_17 = pattern_len_17 + 1
- elif pattern_len == 18:
- pattern_len_18 = pattern_len_18 + 1
- elif pattern_len == 19:
- pattern_len_19 = pattern_len_19 + 1
- elif pattern_len == 20:
- pattern_len_20 = pattern_len_20 + 1
- elif pattern_len == 21:
- pattern_len_21 = pattern_len_21 + 1
- elif pattern_len == 22:
- pattern_len_22 = pattern_len_22 + 1
- elif pattern_len == 23:
- pattern_len_23 = pattern_len_23 + 1
- elif pattern_len == 24:
- pattern_len_24 = pattern_len_24 + 1
- elif pattern_len == 25:
- pattern_len_25 = pattern_len_25 + 1
- elif pattern_len == 26:
- pattern_len_26 = pattern_len_26 + 1
- elif pattern_len == 27:
- pattern_len_27 = pattern_len_27 + 1
- elif pattern_len == 28:
- pattern_len_28 = pattern_len_28 + 1
- elif pattern_len == 29:
- pattern_len_29 = pattern_len_29 + 1
- elif pattern_len == 30:
- pattern_len_30 = pattern_len_30 + 1
- elif pattern_len == 31:
- pattern_len_31 = pattern_len_31 + 1
- elif pattern_len == 32:
- pattern_len_32 = pattern_len_32 + 1
- elif pattern_len == 33:
- pattern_len_33 = pattern_len_33 + 1
- elif pattern_len == 34:
- pattern_len_34 = pattern_len_34 + 1
- elif pattern_len == 35:
- pattern_len_35 = pattern_len_35 + 1
- elif pattern_len == 36:
- pattern_len_36 = pattern_len_36 + 1
- elif pattern_len == 37:
- pattern_len_37 = pattern_len_37 + 1
- elif pattern_len == 38:
- pattern_len_38 = pattern_len_38 + 1
- elif pattern_len == 39:
- pattern_len_39 = pattern_len_39 + 1
- elif pattern_len == 40:
- pattern_len_40 = pattern_len_40 + 1
- elif pattern_len == 41:
- pattern_len_41 = pattern_len_41 + 1
- elif pattern_len == 42:
- pattern_len_42 = pattern_len_42 + 1
- elif pattern_len == 43:
- pattern_len_43 = pattern_len_43 + 1
- elif pattern_len == 44:
- pattern_len_44 = pattern_len_44 + 1
- elif pattern_len == 45:
- pattern_len_45 = pattern_len_45 + 1
- elif pattern_len == 46:
- pattern_len_46 = pattern_len_46 + 1
- elif pattern_len == 47:
- pattern_len_47 = pattern_len_47 + 1
- elif pattern_len == 48:
- pattern_len_48 = pattern_len_48 + 1
- elif pattern_len == 49:
- pattern_len_49 = pattern_len_49 + 1
- elif pattern_len == 50:
- pattern_len_50 = pattern_len_50 + 1
- else:
- pass
- if pattern_len_1 > 0:
- print(" - [length = 1] : [ "+str(pattern_len_1)+" ]")
- if pattern_len_2 > 0:
- print(" - [length = 2] : [ "+str(pattern_len_2)+" ]")
- if pattern_len_3 > 0:
- print(" - [length = 3] : [ "+str(pattern_len_3)+" ]")
- if pattern_len_4 > 0:
- print(" - [length = 4] : [ "+str(pattern_len_4)+" ]")
- if pattern_len_5 > 0:
- print(" - [length = 5] : [ "+str(pattern_len_5)+" ]")
- if pattern_len_6 > 0:
- print(" - [length = 6] : [ "+str(pattern_len_6)+" ]")
- if pattern_len_7 > 0:
- print(" - [length = 7] : [ "+str(pattern_len_7)+" ]")
- if pattern_len_8 > 0:
- print(" - [length = 8] : [ "+str(pattern_len_8)+" ]")
- if pattern_len_9 > 0:
- print(" - [length = 9] : [ "+str(pattern_len_9)+" ]")
- if pattern_len_10 > 0:
- print(" - [length = 10]: [ "+str(pattern_len_10)+" ]")
- if pattern_len_11 > 0:
- print(" - [length = 11]: [ "+str(pattern_len_11)+" ]")
- if pattern_len_12 > 0:
- print(" - [length = 12]: [ "+str(pattern_len_12)+" ]")
- if pattern_len_13 > 0:
- print(" - [length = 13]: [ "+str(pattern_len_13)+" ]")
- if pattern_len_14 > 0:
- print(" - [length = 14]: [ "+str(pattern_len_14)+" ]")
- if pattern_len_15 > 0:
- print(" - [length = 15]: [ "+str(pattern_len_15)+" ]")
- if pattern_len_16 > 0:
- print(" - [length = 16]: [ "+str(pattern_len_16)+" ]")
- if pattern_len_17 > 0:
- print(" - [length = 17]: [ "+str(pattern_len_17)+" ]")
- if pattern_len_18 > 0:
- print(" - [length = 18]: [ "+str(pattern_len_18)+" ]")
- if pattern_len_19 > 0:
- print(" - [length = 19]: [ "+str(pattern_len_19)+" ]")
- if pattern_len_20 > 0:
- print(" - [length = 20]: [ "+str(pattern_len_20)+" ]")
- if pattern_len_21 > 0:
- print(" - [length = 21]: [ "+str(pattern_len_21)+" ]")
- if pattern_len_22 > 0:
- print(" - [length = 22]: [ "+str(pattern_len_22)+" ]")
- if pattern_len_23 > 0:
- print(" - [length = 23]: [ "+str(pattern_len_23)+" ]")
- if pattern_len_24 > 0:
- print(" - [length = 24]: [ "+str(pattern_len_24)+" ]")
- if pattern_len_25 > 0:
- print(" - [length = 25]: [ "+str(pattern_len_25)+" ]")
- if pattern_len_26 > 0:
- print(" - [length = 26]: [ "+str(pattern_len_26)+" ]")
- if pattern_len_27 > 0:
- print(" - [length = 27]: [ "+str(pattern_len_27)+" ]")
- if pattern_len_28 > 0:
- print(" - [length = 28]: [ "+str(pattern_len_28)+" ]")
- if pattern_len_29 > 0:
- print(" - [length = 29]: [ "+str(pattern_len_29)+" ]")
- if pattern_len_30 > 0:
- print(" - [length = 30]: [ "+str(pattern_len_30)+" ]")
- if pattern_len_31 > 0:
- print(" - [length = 31]: [ "+str(pattern_len_31)+" ]")
- if pattern_len_32 > 0:
- print(" - [length = 32]: [ "+str(pattern_len_32)+" ]")
- if pattern_len_33 > 0:
- print(" - [length = 33]: [ "+str(pattern_len_33)+" ]")
- if pattern_len_34 > 0:
- print(" - [length = 34]: [ "+str(pattern_len_34)+" ]")
- if pattern_len_35 > 0:
- print(" - [length = 35]: [ "+str(pattern_len_35)+" ]")
- if pattern_len_36 > 0:
- print(" - [length = 36]: [ "+str(pattern_len_36)+" ]")
- if pattern_len_37 > 0:
- print(" - [length = 37]: [ "+str(pattern_len_37)+" ]")
- if pattern_len_38 > 0:
- print(" - [length = 38]: [ "+str(pattern_len_38)+" ]")
- if pattern_len_39 > 0:
- print(" - [length = 39]: [ "+str(pattern_len_39)+" ]")
- if pattern_len_40 > 0:
- print(" - [length = 40]: [ "+str(pattern_len_40)+" ]")
- if pattern_len_41 > 0:
- print(" - [length = 41]: [ "+str(pattern_len_41)+" ]")
- if pattern_len_42 > 0:
- print(" - [length = 42]: [ "+str(pattern_len_42)+" ]")
- if pattern_len_43 > 0:
- print(" - [length = 43]: [ "+str(pattern_len_43)+" ]")
- if pattern_len_44 > 0:
- print(" - [length = 44]: [ "+str(pattern_len_44)+" ]")
- if pattern_len_45 > 0:
- print(" - [length = 45]: [ "+str(pattern_len_45)+" ]")
- if pattern_len_46 > 0:
- print(" - [length = 46]: [ "+str(pattern_len_46)+" ]")
- if pattern_len_47 > 0:
- print(" - [length = 47]: [ "+str(pattern_len_47)+" ]")
- if pattern_len_48 > 0:
- print(" - [length = 48]: [ "+str(pattern_len_48)+" ]")
- if pattern_len_49 > 0:
- print(" - [length = 49]: [ "+str(pattern_len_49)+" ]")
- if pattern_len_50 > 0:
- print(" - [length = 50]: [ "+str(pattern_len_50)+" ]")
- def print_banner():
- print("\n"+"="*50)
- print(" ____ _ _ _ _ ")
- print("| _ \(_) __ _| \ | | / \ ")
- print("| | | | |/ _` | \| | / _ \ ")
- print("| |_| | | (_| | |\ |/ ___ \ ")
- print("|____/|_|\__,_|_| \_/_/ \_\ by psy")
- print('\n"Search and Recognize patterns in DNA sequences"')
- print("\n"+"="*50)
- print("+ GENOMES DETECTED:", str(num_files))
- print("="*50)
- print("\n"+"-"*15+"\n")
- print(" * VERSION: ")
- print(" + "+VERSION+" - (rev:"+RELEASE+")")
- print("\n * SOURCES:")
- print(" + "+SOURCE1)
- print(" + "+SOURCE2)
- print("\n * CONTACT: ")
- print(" + "+CONTACT+"\n")
- print("-"*15+"\n")
- print("="*50)
- # sub_init #
- num_files=0
- for file in glob.iglob(genomes_path + '**/*', recursive=True):
- if(file.endswith(".genome")):
- num_files = num_files + 1
- f=open(file, 'r')
- genome = f.read().replace('\n',' ')
- genomes[file.replace("datasets/","")] = genome.upper() # add genome to main dict
- f.close()
- print_banner() # show banner
- option = input("\n+ CHOOSE: (S)earch, (L)ist, (T)rain or (R)eport: ").upper()
- print("")
- print("="*50+"\n")
- if option == "S": # search pattern
- search_pattern_with_human()
- elif option == "L": # list genomes
- list_genomes_on_database()
- elif option == "T": # teach AI
- teach_ai()
- else: # libre AI
- libre_ai()
- print ("="*50+"\n")
|