Browse Source

advanced cognition

epsylon 1 year ago
parent
commit
90abbb72ec
4 changed files with 213 additions and 78 deletions
  1. 12 0
      README.md
  2. BIN
      inputs/building.jpg
  3. 201 78
      neuralia.py
  4. 0 0
      stored/memo.dat

+ 12 - 0
README.md

@@ -7,6 +7,14 @@
 
  NeuraLIA tries to learn and reply the correct answer. 
 
+ It acts as a neural network (with 66 neurons by default) and using OCR to search for and memorize patterns.
+
+ You can enter the images you want in the /inputs/ folder and interact with the [AI] to train it.
+
+ When re-analyzing the images, the [AI] will refine its results. 
+
+ Finally, it will try to give you a conceptual answer about the content of ANY image that you have passed it...
+
 ----------
 
 #### Executing:
@@ -37,3 +45,7 @@
 
   ![c](https://03c8.net/images/neuralia3.png)
 
+  ![c](https://03c8.net/images/neuralia4.png)
+
+  ![c](https://03c8.net/images/neuralia5.png)
+

BIN
inputs/building.jpg


+ 201 - 78
neuralia.py

@@ -3,7 +3,22 @@
 """
 NeuraLiA 2020 - by psy (epsylon@riseup.net)
 """
+import time
+import glob
+import os.path
 import numpy as np
+import matplotlib.pyplot as plt
+from PIL import Image
+from numpy import array
+from scipy.ndimage.interpolation import zoom
+from sklearn.cluster import KMeans
+from skimage import measure
+
+VERSION = "v:0.2beta"
+RELEASE = "21052020"
+SOURCE1 = "https://code.03c8.net/epsylon/neuralia"
+SOURCE2 = "https://github.com/epsylon/neuralia"
+CONTACT = "epsylon@riseup.net - (https://03c8.net)"
 
 print(75*"=")
 print(" _   _            ____       _     ___    _    ")
@@ -13,90 +28,198 @@ print("| |\  |  __/ |_| |  _ < (_| | |___ | | / ___ \ ")
 print("|_| \_|\___|\__,_|_| \_\__,_|_____|___/_/   \_| by psy")
 print("                                               ")
 print(75*"=","\n")
-print('"Advanced -SYA (Sigmoid + YFactor_Algorithm)- Neural Network"\n')
-print(75*"=")
-
-########################### PoC ###################################
-dataset = np.array(([1, 1], [1, 2], [1, 3], [1, 4]), dtype=float) # training set
-y_factor = 0.000003141537462295 #  in-time reply Y-factor
-y = np.array(([2], [3], [4]), dtype=float) # score results
-print("\n + Training Set:\n") # printing output
-print("     1 + 1 = 2")
-print("     1 + 2 = 3")
-print("     1 + 3 = 4")
-print("\n + Question:\n")
-print("     1 + 4 = ?")
-print("\n + Answer (expected):\n")
-print("     5\n")
-print(75*"=")
-########################### PoC ###################################
+print('"Advanced Recognition {S.Y.A.} Neural Network"\n')
+print("\n"+"-"*15+"\n")
+print(" * VERSION: ")
+print("   + "+VERSION+" - (rev:"+RELEASE+")")
+print("\n * SOURCES:")
+print("   + "+SOURCE1)
+print("   + "+SOURCE2)
+print("\n * CONTACT: ")
+print("   + "+CONTACT+"\n")
+print("-"*15+"\n")
+print("="*50)
 
 simulation = input("\nDo you wanna start? (Y/n): ")
 if simulation == "n" or simulation == "N":
     import sys
     sys.exit()
-dataset = dataset/np.amax(dataset, axis=0)
-y = y/100
-X = np.split(dataset, [3])[0]
-xPredicted = np.split(dataset, [3])[1]
+
+memo_path = "stored/memo.dat"
+input_neurons = 3
+hidden_neurons = 62
+output_neurons = 1
+
+class Questioning_Network(object):
+    def make_question(self, images_dataset):
+        concepts_dataset = {}
+        i = 0
+        for k, v in images_dataset.items():
+            i = i + 1
+            img = Image.fromarray(v, 'RGB')
+            img.show()
+            answer = input("\n[AI] -> Asking: 'What do you think is this? (ex: building)' -> inputs/"+str(k)+"\n")
+            print("\n[You]-> Replied: "+str(answer))
+            concepts_dataset[i] = str(answer)
+            with open(memo_path, 'w') as data:
+                data.write(str(concepts_dataset))
+            print("[AI] -> Memorizing ...")
+            time.sleep(1)
+        print("")
+
+class Conceptual_Network(object):
+    def extract_concepts(self):
+        concepts_dataset = {}
+        f = open(memo_path, "r")
+        concepts_dataset = f.read()
+        f.close()
+        return concepts_dataset
+
+class Visual_Network(object):
+    def __init__(self):
+        print("\n"+"="*75+"\n")
+        images = glob.glob("inputs/*")
+        for image in images:
+            image = image.replace("inputs/","")
+            if not os.path.isfile('outputs/'+image):
+                im = plt.imread("inputs/"+image)
+                print("[AI] -> Visualizing: "+str(image))
+                im_small = zoom(im, (1,0,1))
+                h,w = im.shape[:2]
+                im_small_long = im.reshape((h * w, 3))
+                im_small_wide = im.reshape((h,w,3))
+                km = KMeans(n_clusters=3)
+                km.fit(im_small_long)
+                cc = km.cluster_centers_.astype(np.uint8)
+                out = np.asarray([cc[i] for i in km.labels_]).reshape((h,w,3))
+                seg = np.asarray([(1 if i == 1 else 0)
+                for i in km.labels_]).reshape((h,w))
+                contours = measure.find_contours(seg, 0.4, fully_connected="high")
+                simplified_contours = [measure.approximate_polygon(c, tolerance=4) for c in contours]
+                plt.figure(figsize=(5,10))
+                for n, contour in enumerate(simplified_contours):
+                    plt.plot(contour[:, 1], contour[:, 0], linewidth=2)       
+                plt.ylim(h,0)
+                print("[AI] -> Analyzing: "+str(image))
+                plt.axis('off')
+                plt.savefig('outputs/'+image, bbox_inches='tight', transparent=True, pad_inches=0)
+            else:
+                print("[AI] -> Recognizing: "+str(image))
+
+    def extract_dataset(self):
+        images_dataset = {}
+        images = glob.glob("inputs/*")
+        for image in images:
+            image = image.replace("inputs/","")
+            print("[AI] -> Remembering: "+str(image))
+            img = Image.open('outputs/'+image)
+            dataset = np.array(img)
+            images_dataset[image] = dataset
+        return images_dataset
 
 class Neural_Network(object):
-  def __init__(self):
-    self.inputSize = 2 
-    self.hiddenSize = 3
-    self.outputSize = 1
-    self.W1 = np.random.randn(self.inputSize, self.hiddenSize)
-    self.W2 = np.random.randn(self.hiddenSize, self.outputSize)
-
-  def forward(self, X):
-    self.z = np.dot(X, self.W1) 
-    self.z2 = self.sigmoid(self.z) 
-    self.z3 = np.dot(self.z2, self.W2)
-    o = self.sigmoid(self.z3)
-    return o
-
-  def sigmoid(self, s):
-    return 1/(1+np.exp(-s))
-
-  def sigmoidPrime(self, s):
-    return s*(1-s)
-
-  def backward(self, X, y, o):
-    self.o_error = y - o
-    self.o_delta = self.o_error*self.sigmoidPrime(o)
-    self.z2_error = self.o_delta.dot(self.W2.T)
-    self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2)
-    self.W1 += X.T.dot(self.z2_delta)
-    self.W2 += self.z2.T.dot(self.o_delta)
-
-  def train(self, X, y):
-    o = self.forward(X)
-    self.backward(X, y, o)
-
-  def predict(self):
-    print("="*75)
-    total_neurons = self.inputSize + self.hiddenSize + self.outputSize
-    print("-> NEURONS: ["+str(total_neurons)+"] (Input: ["+str(self.inputSize)+"] | Hidden: ["+str(self.hiddenSize)+"] | Output: ["+str(self.outputSize)+"])")
-    print("="*75)
-    print("\n + Input (scaled): \n\n " + str(xPredicted))
-    print("\n + Prediction (scaled): \n\n " + str(self.forward(xPredicted)))
-    print("\n + Answer (predicted): \n\n " + str(round(int(self.forward(xPredicted)*100), 2)))
-    print("\n"+"-"*50+"\n")
+    def __init__(self):
+        self.inputSize = input_neurons
+        self.hiddenSize = hidden_neurons
+        self.outputSize = output_neurons
+        self.W1 = np.random.randn(self.inputSize, self.hiddenSize)
+        self.W2 = np.random.randn(self.hiddenSize, self.outputSize)
 
+    def forward(self, X):
+        self.z = np.dot(X, self.W1) 
+        self.z2 = self.sigmoid(self.z) 
+        self.z3 = np.dot(self.z2, self.W2)
+        o = self.sigmoid(self.z3)
+        return o
+
+    def sigmoid(self, s):
+        return 1/(1+np.exp(-s))
+
+    def sigmoidPrime(self, s):
+        return s*(1-s)
+
+    def backward(self, X, y, o):
+        self.o_error = y - o
+        self.o_delta = self.o_error*self.sigmoidPrime(o)
+        self.z2_error = self.o_delta.dot(self.W2.T)
+        self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2)
+        self.W1 += X.T.dot(self.z2_delta)
+        self.W2 += self.z2.T.dot(self.o_delta)
+
+    def train(self, X, y):
+        o = self.forward(X)
+        self.backward(X, y, o)
+
+    def predict(self, dataset, results):
+        score = self.forward(xPredicted)
+        self.final_reply(score, dataset, results)
+
+    def final_reply(self, score, image, results):
+        concepts_dataset = { line.split()[0] : line.split()[1] for line in open(memo_path) }
+        for k, v in concepts_dataset.items():
+            if "{" in k:
+                k = k.replace("{", "")
+            if ":" in k:
+                k = k.replace(":", "")
+            if int(k) == int(score[0]):
+                if "," in v:
+                    v = v.replace(",", "")
+                results[str(image)] = str(v)
+            else:
+                results[str(image)] = "UNKNOWN ..."
+
+# procedural (high) sub-class
 NN = Neural_Network()
-t = 0
-while True:
-  loss = np.mean(np.square(y - NN.forward(X)))
-  if loss > y_factor:
-      t = t + 1
-      print("="*75)
-      print("-> ROUNDS (Learning): "+str(t))
-      print("="*75)
-      print("\n + Input (scaled): \n\n " + str(X).replace("      ",""))
-      print("\n + Actual Output: \n\n " + str(y))
-      print("\n + Predicted Output: \n\n " + str(NN.forward(X)))
-      print("\n + Loss: \n\n [" + str(loss)+"]\n")
-      NN.train(X, y)
-  else:
-      break
-NN.predict()
+VN = Visual_Network()
+CN = Conceptual_Network()
+QN = Questioning_Network()
+
+# procedural (low) sub-class
+images_dataset = VN.extract_dataset()
+concepts_dataset = CN.extract_concepts()
+
+if not concepts_dataset:
+    QN.make_question(images_dataset)
+else:
+    t = 0
+    prev_loss = None
+    results = {}
+    for k, v in images_dataset.items():
+        dataset = v/np.amax(v, axis=0)
+        for data in dataset: 
+            X = data
+            xPredicted = X
+            y_factor = 0.0001 # reply condition factor
+            i = 0
+            for concept in concepts_dataset:
+                i = i + 1
+                y = np.array([i], dtype=int)
+                while True:
+                    loss = np.mean(np.square(y - NN.forward(X)))
+                    if prev_loss == loss:
+                        break
+                    else:
+                        if loss > y_factor:
+                            t = t + 1
+                            print("\n"+"="*75)
+                            print("-> ROUNDS (Learning): "+str(t))
+                            print("="*75)
+                            print("\n + Question (image): inputs/" + str(k))
+                            print(" + Current Answer: " + str(y))
+                            print(" + Loss: [" + str(loss)+"]")
+                            print(" + YFactor: ["+ str(y_factor)+"]")
+                            NN.train(X, y)
+                            prev_loss = loss
+                            y_factor = y_factor + 0.0010
+                        else:
+                            break
+        NN.predict(k, results)
+    print("\n"+"="*75)
+    total_neurons = input_neurons + hidden_neurons + output_neurons
+    print("-> NEURONS: ["+str(total_neurons)+"] (Input: ["+str(input_neurons)+"] | Hidden: ["+str(hidden_neurons)+"] | Output: ["+str(output_neurons)+"])")
+    print("="*75)
+    print("\n"+"[AI] -> Replying ...\n")
+    for k, v in results.items():
+        print("   + Image: inputs/"+str(k)+" -> "+str(v))
+    print("\n"+"="*75)
+

+ 0 - 0
stored/memo.dat